Multi-Target Drug Design Using Cheminformatics Approaches

Sudeep Roy, Ph.D.

Assistant Professor-Cheminformatics(SysBio)

Department of Biomedical Engineering

Brno University of Technology-Brno

Introduction

Definition: Multi-target Drug Design (MTDD) aims to develop single molecules acting on multiple biological targets.

Importance: Suitable for multifactorial diseases like cancer, neurodegeneration.

Cheminformatics role:

Integrates chemical, biological, and pharmacological data.

Source: https://doi.org/10.1016/j.pharmthera.2023.108550

Limitations of Single-Target Drugs and Recent Therapies

Source: https://www.nature.com/articles/s41392-024-01911-3

Advantages of MTDD

Synergistic effects-(Lower Doses)

Lower likelihood of resistance-single point mutation (Cancer and Infectious Diseases)

Reduced pill burden (Drug-Drug Interaction)

Better efficacy in complex diseases (Heterogenous Diseases or Diverse patient population)

Source: https://doi.org/10.1002/prp2.70131

<u>Source: https://www.biosolveit.de/scientific-</u>challenge/project/?projectId=16376243929290

MTDD Workflow

- 1. Target Identification (System Biology, Network Pharmacology, Disease mapping).
- 2. Ligand Design / Selection (SBDD, Scaffold Hopping, Fragment based Methods)
- 3. Virtual Screening (SBVS, LBVS, Optimal Pharmacological Profiles)
- 4. ADMET Prediction (Exclude Unfavourable pharmacokinetics or high toxicity risk compounds)
- 5. Molecular Dynamics Simulation (Assess Binding stability and potential off-target effects)
- 6. In vitro / In vivo Validation (Synthesis, Animal Models)

Target Selection Strategies

<u>Source: https://link.springer.com/chapter/10.1007/978-981-99-6038-5_13</u>

Virtual Screening in MTDD

Ligandbased screening Structurebased screening

Multi-target docking workflows Filtering ligands with affinity for multiple targets

Source:

https://www.tandfonline.com/doi/full/10.1080/17460441. 2025.2458666?scroll=top&needAccess=true

QSAR & Machine Learning

Building predictive models for activity

Integration of chemical descriptors and bioactivity data

Multitask learning algorithms

Source:

 $\frac{https://link.springer.com/article/10.1007/s10822-019-00231-x}{}$

Pharmacophore Modeling

Source: https://www.profacgen.com/pharmacophore-modeling.htm

Molecular Dynamics in MTDD

 $\underline{Source: https://www.creative-biostructure.com/molecular-dynamics-}\\ \underline{simulations.html?srsltid=AfmBOopF4wPKdEYd8c0oh_KQmUK2x2-PABlXthn7ZDTEbpcMD0PNd6wU}$

ADMET & Toxicity Prediction

- In silico evaluation of:
 - Absorption
 - Distribution
 - Metabolism
 - Excretion
 - Toxicity
- Filtering out problematic compounds early

Purpose

• Identify natural compounds as potential BACE1 inhibitors using *in-silico* approaches.

Target Proteins / Pathways

- BACE1 (β-secretase 1)
- Amyloid-β formation pathway in AD.

Goals Achieved

- Virtual screening of natural compounds
- 3D–QSAR pharmacophore model developed
- Molecular dynamics confirmed stability
- Promising BACE1 inhibitor leads identified

Case Study 1: Molecular docking based virtual screening of natural compounds as potential BACE1 inhibitors: 3D – QSAR pharmacophore mapping and molecular dynamics analysis

Source:

https://www.tandfonline.com/doi/full/10.1080/07391102.20 15.1022603

- Large flexible binding sites like BACE1.
- Catalytic ASPDyad (D32 and D228) and Flexible Flap(V67-E77). Imp Residue: T72.
- 10ns Run.
- BBB, Hepatotoxicity,
 PPB, solubility and
 mutagenicity. Scaffolds
 safe for CNS delievery.
- 3 Oligosaccharides Hits.
- Reduction of amyloid levels in AD

Purpose

• Investigate the neuroprotective role of situation in PD mouse models.

Target Proteins / Pathways

- PI3K/AKT → neuronal survival
- Nrf2 → antioxidant defense
- DPP-4 inhibition → upstream trigger

Goals Achieved

- Upregulated PI3K/AKT & Nrf2
- Reduced oxidative stress & neuronal degeneration
- Neuroprotection demonstrated
- Supports repurposing for PD therapy

Case Study 2: Upregulation of the PI3K/AKT and Nrf2 Pathways by the DPP-4 Inhibitor Sitagliptin Renders Neuroprotection in Chemically Induced Parkinson's Disease Mouse Models

Source:

https://pubs.acs.org/doi/10.102 1/acschemneuro.5c00112

Sita, Lina, Alo, Vilda, saxa-DPP4 Inhibitors

Sita alleviated motor and cognitive deficits.

Upregulated: PI3K, AKT, Nrf2(promotes cellular survival, growth and antioxidant), CREB and BDNF(neuronal survival factors).

Downregulated: GSK-3ß (Neuro and Ototoxicity-ENT), NF-Kb(Cancer, Diabetes, atherosclerosis and auto-immune disorders) and alphasynuclein (PD).

Restored neuronal density and integrity

Purpose

• Identify RAGE inhibitors via in-silico approaches to combat Alzheimer's disease.

Target Protein/ Pathway

• RAGE—block receptor to inhibit amyloid-β and inflammatory signaling.

Goals Achieved

- Screened over 700,000 compounds.
- Identified Hit-6 as a potential inhibitor of RAGE

Case Study 3: Identifying RAGE inhibitors as potential therapeutics for Alzheimer's disease via integrated insilico approaches

Source:

https://www.nature.com/articles/s41598-025-01271-0

RAGE: Receptor for advanced glycation end products.

RAGE: Cancer, Diabetes, Kidney Failure, Cardiovascular disease, COPD, Rheumatoid Arthritis, Systemic Lupus, IBS, Asthma and neurological disorders(PD, AD...).

Enamine, TTD, FDA library, ChemDiv, InterBioScreen, Zinc.

Lys39, Lys52, Arg98, Asn112 and Lys110 (HotSpots).

Contact

BioSys_BUT

Email:

roy@vut.cz